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The Lagrangian formalism is employed to derive the commutation relations on null surfaces for relativistic 
field theories. The theories treated are the Klein-Gordon field, the Maxwell field, the linearized gravitation 
theory, and the general theory of relativity. Special attention is paid to the treatment of null surfaces at 
infinity, on which we are able to obtain the commutation relations for the ^'news function," which represents 
the independent radiation modes of the field. For the general theory of relativity, the methods of this paper 
seem appropriate only when we truncate the theory by excluding solutions which are not asymptotically 
flat in the sense of Penrose. 

I. INTRODUCTION 

THE program for the quantization of the gravi­
tational field has long been plagued by the 

inability to construct a complete, nonredundant set 
of true observables within the classical Einstein theory, 
due essentially to the presence of four (nonlinear) 
constraints among the ten Einstein field equations. In 
recent years, Penrose has indicated^ how, by focusing 
our attention on null surfaces rather than the traditional 
space-like surfaces, the difficulty of the constraints 
could be ignored, and solutions of the field equations 
could be characterized to a large extent by a single 
complex function constructed by projecting the Rie-
mann tensor into the null surface. In a recent paper,^ 
Penrose showed that for as3nnptotically flat surfaces a 
particularly appropriate choice of null surface would be 
the null cone at infinity. For such a choice of null 
surface the complex scalar function which essentially 
characterizes the Riemann-Einstein manifold is closely 
related to the Bondi "news function.''^ 

It would thus appear that Penrose's scalar is ideally 
suited for the description of gravitational radiation and 
therefore particularly appropriated for use as a basis 
for the construction of a quantum theory. An addi­
tional advantage obtained by working in the neighbor­
hood of infinity is that the nonlinear terms in the 
Einstein field equations may be regarded as vanishingly 
small and we may expect that relations derived for the 
linearized theory of gravitation would continue to be 
valid in the full theory. A major obstacle to the con­
struction of Poisson brackets for the Penrose scalar is 
the essential use of null surfaces in its definition. The 
usual canonical formalism presupposes canonical vari­
ables defined on a space-like hypersurface. It is de­
cidedly inappropriate for generalization to a null 
hypersurface, for the naturally defined canonical 
momentum generally turns out to be a constraint 
within the null surface. For familiar theories one could 
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in principle propagate the conventional commutation 
relations from the initial space-like surface to the 
desired null surface and thereby discover an equivalent 
set of commutation relations for variables defined on 
a null surface. Purely apart from considerations of 
feasibility, we are not interested in such an approach 
since it is precisely for the situation where we have 
difficulty in constructing commutators of observables 
on space-like hypersurfaces that we are motivated to 
investigate commutators defined on null surfaces. We 
shall therefore employ the less familiar but more co-
variant Lagrangian formalism^ in all our considerations. 

In order to introduce only one difficulty at a time, 
we shall divide the presentation into several stages. 
Section II will present a brief review of the Lagrangian 
formalism and as a simple illustration we shall treat 
the free particle. In Sec. I l l we shall illustrate how to 
apply the Lagrangian formalism to obtain the usual 
equal time commutation relations for the Klein-Gordon 
field. In Sec. IV we shall observe the nature of the 
additional complications introduced when we employ 
characteristic surfaces. We shall derive the commutators 
of the Klein-Gordon field on a null cone and at null 
infinity. Section V will be devoted to the treatment of 
the Maxwell field, both on a space-like and on a null 
surface hypersurface, and at null infinity. The new 
difficulties encountered at this stage are the presence of 
a gauge group, as well as the need to introduce explicitly 
the Penrose scalar. Section VI will, in a similar fashion, 
treat the linearized theory of gravitation. In the con­
cluding section, VII, we shall discuss the relevance of 
the results of Sec. VI for the general theory of relativity. 

II. THE LAGRANGIAN FORMALISM 

Within the Hamiltonian formalism, a canonical trans­
formation may be defined as a transformation of the 
canonical variables (position and momentum) in phase 
space which preserves Hamilton's equations of motion. 
The canonical transformations may be shown to form 
a group. Any arbitrary function of the canonical 
variables can be shown to generate an infinitesimal 
canonical transformation. The Poisson bracket of any 
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two functions of the canonical variables, f(qi,pj) and 
giqijpj), defined as 

U,gJ-
i \dqidpi dpi dqj 

(1) 

is found to equal the change in / induced by the in­
finitesimal canonical transformation generated by g (or 
equivalently the negative of the change induced in g 
by the infinitesimal canonical transformation generated 
by / ) . A further, deeper understanding of the Poisson 
bracket is obtained by employing the Jacobi identity 

U,Lg,hl']+Lglh,ni+Lk,U,sIi=o, (2) 

which is a direct consequence of the definition Eq. (1). 
From Eq. (2) we can easily conclude that C/?d> which 
is again some function of the canonical variables, gener­
ates the infinitesimal canonical transformation which 
is the commutator of the infinitesimal canonical trans­
formations generated by / and g individually. The ca­
nonical group contains a normal subgroup, the invariant 
canonical group obtained by considering those canonical 
transformations which leave invariant the form of the 
Hamiltonian as a function of the canonical variables. 
I t is evident that the infinitesimal invariant canonical 
transformations are generated by those functions of the 
canonical variables which are constants of the motion. 

Within the Lagrangian formalism, a canonical trans­
formation may be defined as a transformation of the 
dynamical variables of configuration space with the 
property that, apart from the addition of a total time 
derivative to the Lagrangian, it leaves invariant the 
maximal order of time derivatives occurring in the 
Lagrangian. For the usual theories under consideration 
in this paper the Lagrangian is a function of only the 
positions and velocities. The canonicity condition then 
asserts that the transformation does not induce ac­
celeration dependent terms into the Lagrangian. In 
view of the fact that the definition of a canonical 
transformation now requires explicit reference to the 
form of the Lagrangian, and that under canonical 
transformations the form of the Lagrangian in general 
will change, it is rather evident that the canonical 
transformations do not form a group in configuration 
space. However, if we consider only those canonical 
transformations which leave invariant the form of the 
Lagrangian as a function of the positions and velocities, 
they do form a group, and in fact coincide with the 
group of invariant canonical transformations as defined 
in the Hamiltonian formalism. 

The precise relationship between the constant of the 
motion, C, which generates an infinitesimal invariant 
canonical transformation and the infinitesimal change 
in the dynamical variable, dqa, which it induces is found 
to be^ 

dC 
— + E 5 ^ a i ^ " = 0 , (3) 
dt a 

where F"" are the Euler-Lagrange equations derived 
from the Lagrangian under consideration. We can 
therefore read directly from the coefficient of F^ the 
Poisson bracket of qa and C: 

5^a=[^a,C]. (4) 

As an elementary illustration of this method for 
determining Poisson brackets, consider the free particle 
given by the Lagrangian 

L=ij:mXaK (5) 

The Euler-Lagrange equations for this Lagrangian are 

Fa=~md'Xa/dt'=^0. (6) 

Thus if we define 

a 

where the X̂  are a set of arbitrary constants, we readily 
observe that as a consequence of the equations of motion 
(6), C is a constant of the motion. In fact 

dC dC / - X a / \ 

dt a dt a \ m / 

Comparing with Eqs. (3) and (4) we find 

-\at 
- CX«,C]= [Xa, E X6(X6-Z50] . 

h 

(8) 

(9) 

Since Eq. (9) must be vaHd for all times / and for all 
values of the arbitrary constants Xa, we readily conclude 
that 

[Xa,X6] = 0 , [X«,wZ5] = 5a6, (10) 

in full agreement with the initial definition, Eq. (1). 

III. THE KLEIN-GORDON FIELD 

We now wish to apply the Lagrangian formalism to 
the problem of determining the Poisson brackets for a 
classical field. I t is still true that the invariant canonical 
transformations are generated by constants of the 
motion. Thus, Eq. (4) remains valid, where now the 
constant of the motion C may be obtained by inte­
grating a conserved vector density C^ over a space-like 
h3^ersurface: 

-i CdS, (11) 

(A summation convention will be understood on re­
peated space-time indices.) The relationship between 
the constant of the motion C and the change in the 
field variable 8qa which it generates is obtained by the 
evident modification of Eq. (Sy 

C ^ p + Z 5 g a F « = 0 , (12) 

file:///dqidpi
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where, as before, F"" are the Euler-Lagrange (field) 
equations for the Lagrangian under consideration. (A 
comma denotes differentiation. Space-time indices may 
be raised and lowered by means of the Minkowski 
metric, with signature 1, — 1 , — 1 , ~1 . ) 

Let us now consider the Lagrangian for the scalar 
field, $ : 

L=^h^„^'^. (13) 

(We could, if we wish, include a mass term. But this 
would not affect our discussion in any essential way.) 
The field equation for this Lagrangian is 

F ^ - $ , / = : 0 . (14) 

We shall define a to be an arbitrary solution of the 
equation 

a.p'^^O. (15) 

We distinguish between Eqs. (14) and (15), although 
they are really the same equation, in order to emphasize 
that $ is to be regarded as a dynamical variable satis­
fying commutation relations, whereas a is simply an 
arbitrary but specific mathematical function which 
happens to be a solution of Eq. (15). Since Eq. (15) is 
second order in time, it is evident that both a and 
da/dt may be given as independent arbitrary functions 
on an initial space-like hypersurface. 

We employ a in order to define the vector field C^ : 

CP^aP^-a^p, (16) 

Taking the divergence of Eq. (16) we find by virtue 
of Eqs. (14) and (15) 

C ' , p + ( - a ) i ? = 0 . (17) 

Comparing Eq. (17) with Eq. (12), we see from Eqs. 
(4) and (11) that 

U, [cpdS/i=-a. (18) 

Note that Eq. (15) assures that 5$ is a solution of the 
field equation (14). 

On the initial space-like h3^ersurface ^=const; Eq. 
(18) yields (the index 6" running from 1 to 3): 

[̂ $(x̂ o), ( i da 
—( 
dt 
<y%0Mrfi) 

a(y%0)—{y%0)]d^y = - a ( ^ ^ 0 ) . (19) 

In view of the fact thata(y^,0) and (da/df){y%0) are 
independent arbitrary functions, Eq. (19) can only be 
valid if 

[<i>(x%o),$(r,o)]=o, 
[p(x%0)Xd^/dt)(y%0)'] = d^{x'-y'). ^ 

This is most readily obtained by assigning in Eq. (19) 

alternatively a(3;%0) = 0, {da/dt)(y%0) = ds(y'-z'), and 
a(y%0)=^8z(y'-z'), {da/dt){y%0) = 0. We see, inci-
dently, from these assignments that we encounter no 
difficulties concerning the existence or convergence of 
the integral defined in Eq. (11). 

IV. COMMUTATORS ON NULL CONES 

In order to treat the scalar field on a null cone much 
of the development of the previous section may be 
taken over intact. Selecting the Lagrangian as in Eq. 
(13), and defining the auxiliary weight function, a, as 
a solution of Eq. (15), we can construct the conserved 
vector field of Eq. (16). The commutation relation, 
Eq. (18), follows eactly as in the case of the space-like 
hypersurface. However, there are two important 
changes in the subsequent development which result 
from the use of null cones. (1) In the integral of Eq. 
(11) the surface is chosen to be the null surface. We 
must be particularly careful about handling the end 
points of the integral if C is to be a constant of the 
motion. In point of fact the additional caution will only 
be required in our treatment of the scalar field and will 
be presented in detail. For the Maxwell field and the 
gravitational field we shall find it possible to select an 
integrand in Eq. (11) just as localized on the null cone 
as it was on the space-like hypersurface in Sec. I I I . 
(2) Since the null cone is a characteristic surface for the 
d'Alembert equation, Eq. (15), it is no longer true that 
both a and its first derivative off the initial surface can 
be prescribed independently. I t is still true, however, 
that a itself can be arbitrarily prescribed on the null 
cone, and that shall turn out to be sufficient for our 
purpose. 

I t will be convenient to introduce coordinates adapted 
to the null cone which is to be the initial surface. We 
therefore take as our coordinates 

X^=u=={l/^/T|{t~r), X^=d 

X^=v=(l/^/2)it+r), X'=cl> 
(21) 

where r, 6, <t> are the usual polar coordinates. In this 
coordinate system the Minkowski metric becomes 

(22) 

When employing these coordinates we understand the 
comma to denote covariant differentiation with respect 
to this metric. 

The initial surface with which we shall be concerned 
satisfies the equation 

0 
1 
0 
0 

1 
0 
0 
0 

0 
0 

_ ^ 2 

0 

0 " 
0 
0 

—r^sin^d 

X » - M = Al, (23) 

where k is some fixed, but arbitrary constant. The 
surface element of this null cone is evidently 

dSp^dph'^smOdvdddcj). (24) 
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Thus from Eqs. (11) and (16), we find 

r (da da ^^ \ 
a— )r^ sinddvddd(l> 

dvJ 

• / ( 

} ^ 

dv dv / 
\s>inddvddd<l), (25) 

We note at this point two interesting properties of Eq. 
(25): (1) In contrast with the case of the space-like 
hypersurface, projection of the integrand into the null 
surface element yields derivatives exclusively within 
the null surface, rather than off of the surface. (2) The 
second term in the integrand, being a perfect differ­
ential, will yield contributions exclusively from the 
end points. We shall denote these end points symboh-
cally by 0 and oo. We can, if we wish, take the arbitrary 
function a to vanish at the end points and thereby 
avoid this complication. Although such a choice will 
in fact be made for the Maxwell and the gravitational 
fields, it will prove convenient in the case of the scalar 
field to assume only that the behavior of $ a is such that 
the contributions from the end points are nonsingular. 
What will essentially be entailed is that $ fall off no 
slower than r~^ at infinity, and diverge no worse than 
r~^ at the origin—not particularly severe restrictions. 

In view of the arbitrariness of a on the initial surface 
we may take it to be 

a = a{v-v')diQ-Q'), (26) 

where a is the unit antisymmetric step function, i.e., 

-i x<o, 
cr(x) = 

+i x>o, 
(27) 

and 5(12—0') is the Dirac delta function on the unit 
sphere, 12 denoting the solid angle, i.e., 

5(12-120 = (smd)-'8(0-e')d{(l>-(j>'). (28) 

Inserting Eq. (26) into Eq. (25) we obtain 

C = 2 / # (z;',120 - i [ r $ ] ( oo ,12') - i[r<l>] (0,12') (29) 

[where we have introduced the notation limr-*a r^(r,Q) 
= [r$](a,12)]. Thus Eq. (18) yields 

C#(.,12),2/#(.',120-|([r$](^,120+C^^](O,120)] 
= -la(v-v')8(n-nyr2. (so) 

We cannot assume that the contributions from the end 
points commute with the field in the interior, since they 
can lie on the same null ray. However we may evaluate 
the commutator at the two end points. Thus at r ' = oo 
we have 

[$(.,12), fCr$](^,120-iC/^](O,120] 
= -5(12-12')/2r, (31) 

while at /==0 we have 

[$(.,0), f (r*)(0,O0-iC^^](-,^0] 

= +5(12-120/2^. (32) 

If we now add Eqs. (31) and (32) we find 

C$(.,fi),Cr*](0,O')+['^](^,ii')] = 0. (33) 
Thus the sum of the contributions from the two end 
points does in fact commute with the field in the 
interior. Returning to Eq. (30) we can now write it in 
the form 

Z^{v,n),^(v\n)2= -a(v-v')8(Q-Q')/^r/ (34) 

or, if we prefer 

[$(z',12),$(2;',120]= -a{r'-/)d(U~n')/2r/ (35) 

smce 
c^(y_z;0 = (7(v2'(r- / )) = ( r ( r - r O . (36) 

One can readily check that Eq. (35) is equivalent to the 
usual commutation relations, Eq. (20). 

In order to obtain the commutation relations ^^at 
infinity,'' we must understand correctly what the appro­
priate limiting procedure is. If we wish to use the 
surface at past null infinity of Penrose,^ the points of 
which are labeled by the coordinates v, 6, 0, we return 
to the equation of the initial surface Eq. (23) and go 
to the limit ^ —> — oo, keeping v, 6, 0 fixed. From Eqs. 
(21) it is evident that this limiting process implies 
r —>oo and ^ —> — oo, thereby justifying the name "past 
null infinity.'' If we define 

/)(z),12)= lim f$(i;,12) (37) 

and employ this limit in Eq. (34), we obtain 

[p(z;,12),p(z;',120]= - Jo-(z;-z;05(12-120. (SS) 

Equation (SS) is in agreement with the results of R. 
Sachs,^ who obtained essentially the same expression 
by considering the commutation relations which one 
must impose on the data at infinity in order to obtain 
the usual commutation relations at finite points. The 
virtue of the present approach is that it can be extended 
to those cases where we do not know the correct 
commutation relations at finite points. 

The limiting procedure of Eq. (37) clearly singles out 
the incoming radiation modes of the field. In order to 
obtain the commutators for the out-going radiation 
modes we could redo the entire analysis on a surface 
v = k, and then take the limit ^ - ^ + oo. What we would 
obtain in this fashion is a relation analogous to Eq. (38) 
with V replaced everywhere by u, and p{uyQ) defined by 
the appropriate modification of Eq. (37). I t is of some 
interest to note that we could have obtained precisely 
the same commutation relations had we considered the 

5R. Sachs, Phys. Rev. 128, 2851 (1962). 
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massive Klein-Gordon field. The more interesting 
question of the commutators between the in-coming 
and the out-going radiation fields would of course 
require a complete solution of the field equations from 
— 00 to + 0 0 , in which the value of the mass would 
need to enter. As long as we confine our attention to an 
initial surface, even though it may be null, the mass 
never need enter into our considerations. 

V. THE MAXWELL FIELD 

The Lagrangian for the electromagnetic field is 

L^-lF^^Fi^y, (39) 
where 

from which we readily deduce the field equations 

F^^F^\x=0. (41) 

Let us define the vector field C^ as 

Cp^a^F^p+^,F^p'+y,,F^'^, (42) 

where F^^* is the dual of fp, that is, 

F,,*=i€,.«^F-^ (43) 

and enpafi is the totally antisymmetric tensor formed by 
the product \/g with the Levi-Civita tensor density. 
The distributions â x, Pix, and y are yet to be determined. 

Taking the divergence of Eq. (42) we find from Eqs. 
(40), (41), and (43) 

C^p+(-«M-T,M)^^= («M..+i/5«'^6«^,,)F^^ (44) 

If, analogous to Eq. (15), we require 

(^,x,v-a,,„+l3''>^ea^^v= 0, (45) 

we satisfy Eq. (12) with 

dAf,= '-af,-y,^, (46) 

We should note that Eq. (45) assures that M^ will 
satisfy the field equations (41). 

The potentials, Afx, are of course defined only up to 
a gauge transformation 

A'^^A^,+a,^. (47) 

If we wish, we can employ the arbitrary scalar field, a, 
to impose a subsidiary condition on the potentials. 
Alternatively, we can eliminate the arbitrary scalar 
field by working exclusively with the gauge-invariant 
field tensor of Eq. (40). From Eq. (46) we see that the 
completely unrestricted function y reflects our ability 
to perform an arbitrary gauge transformation on the 
perturbed potentials 8A^. We may select y in order to 
preserve for the perturbed potentials the same sub­
sidiary conditions which we imposed upon the original 
potentials, or alternatively, we can eliminate all refer­
ence to the arbitrary function y by confining our 
attention to the perturbation of the field tensor. In 
this section we shall employ the latter course. 

We have from Eqs. (4), (42), and (46) 

(48) 

The last term in Eq. (42) was eliminated from the 
above integral by integrating by parts and employing 
the field equation (41). If we now take the curl of Eq. 
(48) we obtain the gauge-invariant commutation 
relations 

From Eqs. (43) and (45) we can also write 

(49) 

(50) 

(51) 

If we confine our attention to a space-like hyper-
surface, which we take to be /=constant , the com­
mutation relations for the field strengths are particularly 
transparent. This is due to the fact that a^^ and ̂ ^ may 
both be chosen arbitrarily on a space-like hypersurface 
without contradiction of Eq. (45). By selecting alter­
nately a j ,=5 / '5 (x~x0 , Pfi=0 and a^=0, p^=d„f'' 
X5(x—xO we readily obtain 

CF.,(x),F^HxO]= - 5 / 5 . , ( x - x 0 + 5 / 5 . , ( x - x 0 , 

[F.,(x),F^^*(xO] = 0 , 

[F*.,(x),F^4(xO] = 0, 

[F*,,(x),F^4*(xO]= - 6 / 5 . , ( x - x 0 + 5 / 5 . , ( x - x 0 , 

where the indices r, s, t run from 1 to 3. 
In order to obtain the commutation relations on a 

null surface, it will prove convenient to introduce a 
quadruple of null vectors adapted to the surface in 
question. Recall that in the coordinate system given 
by Eqs. (21) the null cone which we shall consider as 
our initial surface is given by Eq. (23). We shall define 
kfj. to be the gradient of the family of null surfaces 
which satisfy Eq. (23). If we define 1,1 as the gradient 
of the family of surfaces X ' = 'y = constant, we evidently 
have 

k''k^^lH^=0, M ^ = 1 . (52) 

We complete the quadruple by introducing the complex 
conjugate pair of space-like null vectors m^, m^ which 
satisfy the conditions 

k^m^=l'^m^=m^m^=0, m^m^— — l, (53) 

In the specific coordinate system of Eqs. (21), these 
vectors can be chosen to have the form 

K=h,\ / , = V , m,= {r/^){b,^+ismeh,^) (54) 

or equivalently 

kf'^-h^, l^^do", w^ = —^( §2^+-7—53'*] . (55) 
r^\ sm0 
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A particularly useful set of identities which one can 
easily deduce from these expressions is 

kH''€fiva^=i(ma'^^—fn^fna), (56a) 

mf'm'e^.a^^iikak-k^Q, (56b) 

k^m''enpa^=i(ka'tn^—k^ma), (56c) 

l'^ni''€nua0=i(lam^—lfima), (56d) 

and their complex conjugates. The metric tensor of 
Eq. (22) can be expressed in terms of our null quadruple 
as 

gfxv=k^h+ki;lfi—mfjmp—niym^, (57) 

If we now select as the equation for our initial 
surface Eq. (23), much of the discussion can parallel 
that of Sec. IV. In particular, we retain the com­
mutation relations of Eqs. (49) and (50), where now 
the surface element is that of Eq. (24), namely, 

dSp=kpr^ sm6dvd6d<j). (58) 

I t is no longer true that ap and ^p can both be chosen 
arbitrarily on the initial null surface and continue to 
satisfy Eq. (45). For, if we examine the components 
of Eq. (45) when projected on the complete set of 
bivectors k^H'\ l^^m'^, l^f'7n'\ m^^m'^ k^^'m"^, k^''7n'\ 
we see from Eq. (56c) and its complex conjugate that 
two of the resulting equations contain derivatives of 
ap and I3p entirely within the initial surface. These two 
equations may be written 

km'l(a,+ip^),,- (« .+^ /3 . ) .M] = 0 , (59a) 

k''m^[,(a^-il3,),y-(a,-i^,),^'] = 0. (59b) 

If we regard a^ and 13,1 as real vector fields, Eq. (59b) is 
evidently the complex conjugate of Eq. (59a). However, 
it will be convenient for the subsequent development 
to allow a^ and jŜ  to assume complex values, in which 
case Eqs. (59a) and (59b) are independent conditions. 
The remaining four equations, which give the propa­
gation off the initial surface, are 

(kH'+mm%(a^+il3^),,- (a,+i^,),;] = 0, (60a) 

If'm'Ka^+i^;),,- (a,+il3,),;] = 0, (60b) 

(kH'--mm')Z(a^-il3;),,-(a,-iff,),^2 = 0, (60c) 

lm'Z(a^-il3;),,~ (Q! , -^ /? , ) , J = 0. (60d) 

Equations (60a) and (60b) propagate the components 
k^(o^^+i^^) and m^'iap.+ifi^), respectively, off the initial 
surface. If we differentiate Eq. (59a) in the /^ direction, 
we obtain an equation for the propagation of 
m^{ap,-\-iPp),ak'' indicating the usual lack of uniqueness 
typical of propagation off a characteristic surface. [The 
remaining undetermined component, l^(a^-{-ip^), re­
flects our ability to perform an arbitrary infinitesimal 
gauge transformation and can, without loss of gen­
erality, be taken to be everywhere 0.] Similar con­
siderations employing Eqs. (60c), (60d), and (59b) 

show that the propagation of kf'ia^—i^^), m'^{ay,—ifiy), 
and m^{ay,—iPp)^ak'^ off the initial surface are deter­
mined solely by the data on the initial surface. [As 
before, l^{a^—i^p) may also be set equal to zero by a 
gauge transformation.] Thus we can assert that if we 
can find a set of initial data which satisfies the two 
constraint equations (59), a full solution of Eq. (45) 
can be determined subject to the usual ambiguity 
typical of propagation off a null surface, as well as the 
freedom to perform arbitrary gauge transformations. 
The essential point is that apart from Eqs. (59), there 
are no further constraints. 

Let us consider 

(61) 

where a is an arbitrary scalar distribution. 
Equations (59) are trivially satisfied for any scalar a. 

The resulting values for the vector fields, 

a^=lam^, jŜ , = — ̂ iaTfip., (62) 

when inserted in the integral of Eq. (49) yields, via 
Eqs. (58) and (56c), 

/ 
a 

2 
-ipt^^'^y smSdvdedcj) 

= / anbfJZvF^'r^ sinSdvdddct) 

= ~ I aypr'^ smddvd6d(l>, (63) 

where ^ is the Penrose function^ for the Maxwell field, 
whose form on the null cone fully determines the field 
in the interior of the cone. In view of the arbitrariness 
of the scalar field a, a particularly convenient choice 
will be 

a=8{v-v')8(n-^')/r/, (64) 

We can trivially perform the indicated integrations of 
Eq. (63) and obtain simply —\f/(v\Q,'). Gathering the 
terms of Eqs. (62), (63), and (64) in the expression 
for the commutator, Eq. (49), we thereby obtain the 
commutator between the field strength F^p, and the 
Penrose function. Rather than write this out in detail, 
a cumbersome but straightforward procedure, it will be 
more illuminating and relevant to determine the com­
mutators for the Penrose function at various points on 
the null cone. This is readily obtained by multiplying 
Eq. (49) by kf'Tfi^ and kf'm". The form of a^ given in 
Eq. (62) yields immediately that kf^7n''(a^,v—av^^) = 0, 
Thus we find 

[^(.,12),^(/,120] = O. (65) 

From Eq. (65) we obtain by complex conjugation 

[^(z-,O),^(/,O')]=0. (66) 

A less trivial expression is obtained by multiplying 
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Eq. (49) by k^m". Now we must make explicit use of 
Eq. (64), as well as Eq. (54). In this manner we find 

l^{v,^),yp{v',^')~] = b'{v-v')b{^---^')/2rr', (67) 

where h'{v—v') is the first derivative of the Dirac delta 
function. Equations (65), (66), and (67) fully char­
acterize the commutation relations for the Maxwell 
field on a null cone. In order to obtain the commutation 
relations on the null cone at infinity we proceed as in 
Sec. IV. In fact, if we recall the discussion in the para­
graph which preceeds Eq. (37), we see that it is con­
venient to define 

p{vp)^ lim r\l/{v,Q,). (68) 

In terms of p and its complex conjugate p, the com­
mutation relations for the Maxwell field at "past null 
infinity" are easily seen to be 

[p(.,fi),p(/,0')] = [p(^,^),p(z^W] = 0 (69) 
and 

[p(z;,fi),p(z;',O0] = +i6'(^-2;')6(12-fi0. (70) 

The commutation relations for the Maxwell field at 
"future null infinity'' can be obtained in a fashion 
strictly parallel to that outlined for the scalar field at 
the end of Sec. IV and need not be repeated here. 

In order to facilitate comparison with the results of 
Sec. IV, it is convenient to introduce a gauge such that 
the vector potential ^ ;x, satisfies an "out-going radiation 
condition," 

(71) kf'A^^O. 

In this gauge, the two components of the vector poten­
tial, which characterize the two independent states of 
polarization of the Maxwell field, may be represented 
by the single, complex scalar mM^. If we define 

^= rmM^ (72) 

a simple computation, employing Eq. (71), shows that 

k^A,a=ryp, (73) 

Equations (66) and (67) can therefore be written 

^0, 
L dv ' dv' J 

rdAiyp) dA{v\Q,')-i 

L dv dv' J 

If we therefore require that 

iA{v,^)Awm-^ 

(74) 

)5(12-O0. (75) 

and 

[_A{v,^),A {v\n')']=-l<j{v-~v')b{9.-V.'), 

(76) 

(77) 

we obtain a set of commutation relations which are 
equivalent to the original relations (66) and (67). 

Defining the "news function" 

a=Hm A = lim TTU^'A^, 
r-*oo r-*oo 

we evidently have, analogous to Eq. (73), 

Thus requiring 

and 
[_a(v,^),a{v\Q')2 = 0 

(78) 

(79) 

(80) 

la(v,Q),a(v\^')']= - |(r(z;-/)5(12-O0, (81) 

we obtain a set of commutation relations which are 
equivalent to the original relations (69) and (70). 

Equations (80) and (81) are exactly of the form that 
we should expect from the results of Sec. IV, and are 
presented for purposes of comparison with that section. 
However, it is evident that they are not the only 
possibility, at least in so far as the derivation presented 
in this paper is concerned. For in order to obtain them, 
two integrations had to be performed, one with respect 
to V and one with respect to v\ Even with reasonable 
boundary conditions, which would exclude terms which 
diverge for large v and v\ we are still left with the 
addition of an arbitrary antisymmetric function of the 
angles to each of the commutators (80), (81), or (76), 
(77). These surely ought to vanish in view of the space­
like character of the pair of points concerned. Nor is 
the situation substantially improved by Eq. (48) in 
the radiation gauge, for an integration with respect to 
v^ would still be required in order to obtain the com­
mutation relations among the transverse components 
of the potentials. Perhaps an argument similar to that 
which led to Eq. (33) can be found which could exclude 
these arbitrary functions. 

VI. LINEARIZED GRAVITATION THEORY 

The linearized theory of gravitation may be obtained 
from the Einstein theory of general relativity by a 
process of discarding all nonlinear terms, or it may be 
presented as an independent field theory in its own 
right. We prefer to take the latter course in order to 
parallel the presentations of the preceding sections. 
[Recall that throughout this section we shall maintain 
the notation that a comma shall denote covariant 
differentiation with respect to the flat background 
metric which in polar coordinates we will take to have 
the form of Eq. (22).] 

The potential of the gravitational field is represented 
by a symmetric tensor, h^p, which is not directly an 
observable, but is subject to gauge transformations 
such that tensors which can be obtained from one 
another by the relation 

ftfxv f^nv yfiyv yv (82) 

where 7;̂  is an arbitrary vector field, are understood to 
describe the same gravitational field. The gauge-
invariant field quantity, analogous to F^^ in the case 
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of the Maxwell field is the fourth order tensor 

which has all the symmetries well known for the 
Riemann tensor of Riemannian geometry. I t will be 
convenient for purposes of ultimate comparison with 
the full Einstein theory to define the following tensors 

Tfiy^^h'"'(K0,y+Ky,^-h0y,,) , (84) 

Ra^^g^'Ra,^., R^g-^Ra^, (85) 

Ga0=Rap-^gapR, (86) 

C apyd = RaPy8~-i {gayRp8-{- g^dRay— gfiyRaS — gasR^y) 

- i (g^yga8- gayg^8)R • (87) 

As the notation implies, the above quantities may be 
obtained by the process of linearization of the corre­
sponding quantities of the full theory. Equation (83) 
corresponds to the Riemann or curvature tensor, Eq. 
(84) to the Christoffel symbols or afiine connection, 
Eq. (85) to the Ricci tensor and Ricci scalar, Eq. (86) 
to the Einstein tensor, and Eq. (87) to the Weyl or 
conformal curvature tensor. In addition to having all 
the symmetries of the Riemann tensor, Ca^ys has 
vanishing trace on each pair of indices. We note that 
as a consequence of Eq. (S3) the Einstein tensor can 
be shown to satisfy the identity 

G\,,=0, (88) 

The Lagrangian for the linearized gravitation theory 
is 

z=ĝ ''(r%,r̂ «̂ -r̂ «r%;3), (89) 
from which we can deduce the field equations 

Ga^=0, (90) 

Let us now introduce an auxiliary tensor field, a^^a, 
which is defined to have the following symmetries 

OilXV(T~l~Oiv<XH\* HP(T I f-'t-vaul f-*-(rfXP~ 

apLvafi'^^O for the space-like case | 

a,xvJ'^=0 for the null case J 

(91) 

(n"^ being the unit normal to the family of space-like 
hypersurfaces employed.) 

I t follows from these relations that a^^a- has precisely 
ten independent components. With the aid of this 
tensor we can now define the vector field 

Cp^af,,aCf''''p+aP^,Gf''+2yfif'p, (92) 

where y^ is an arbitrary vector field. Taking the 
divergence of C^, we find after some rearrangement of 
terms and employing the identity Eq. (88), 

CP,p+(-af^,p,f,-2y,,p)G<'P=af,,,,pC^^-p, (93) 

In analogy with Eqs. (15) and (45), if we require the 
auxiliary field to satisfy the differential equations 

Q /̂xvo-.p OLnvp^ff\^ffpn,v (^<rpp,n ^LgftpiP^ v<T,y\(^ crv,y) 

+ gi '<r(«V.7+«V.7)-^ ' 'p(«V.7+«V.7) 
-•g,a(a\p,y+ay,,,y)'] = 0 (94) 

the right-hand side of Eq. (93) will vanish identically. 
In this fashion we can satisfy Eq. (12) with 

dhp,v= — K « % » ' . 7 + «'^»'M,7) — T M . f — T v (95) 

[We note at this point that Eq. (94) assures that dhft^ 
satisfies the field equations (90).] 

A comparison with Eq. (82) indicates that the term in 
CP containing 7;,, namely, lyfi^p^ generates a pure 
gauge transformation. As in the previous section, we 
can either exploit the freedom to perform gauge 
transformations in order to establish a preferred gauge 
frame, or we can work exclusively with gauge-invariant 
quantities. We shall again prefer to take the latter 
course. 

We now conclude from Eqs. (4), (92), and (95) 

AMV. Uoc^yC^^yPdSp = - 4 ( « V . 7 + « ^ M . T ) 

-7/...-7»'./x, (96) 

where we have taken note of the field equations, Eq. 
(90), to discard the last two terms in the definition of 
CP, Eq. (92). Differentiating Eq. (96) we obtain the 
gauge-invariant commutation relations 

Capyd, I ay, .C^'-pdSo = -i(a'̂ , adfU^y +a'', ^y.naS 

-\-OL^8a,ti^y-\-OL^y^,Ha8-~OL^ay,iip8 — OL^^8,ixay 

--OL^ya,n^8 — Oi'^8^,liay)' ( 9 7 ) 

[We have ignored the distinction between Ra^y^ and 
Ca/375 in view of Eq. (90).] 

The auxiliary field, oiy^y^, of course must satisfy the 
differential equations (94). If we confine our attention 
to obtaining commutation relations on an initial space­
like hypersurface, the situation is relatively simple. A 
careful inspection indicates that Eq. (94) consists of 
ten independent linear first-order equations which 
uniquely determine the first derivative normal to the 
hypersurface of the ten independent components of 
afipcTj as linear combinations of first derivatives within 
the space-like h}^ersurface. I t follows that a^^^a- may 
be assigned arbitrarily on the initial hypersurface and 
Eq. (94), together with the symmetry conditions, Eqs. 
(91), will determine it uniquely everywhere. In order 
to evaluate the right-hand side of Eq. (97), explicit 
use will have to be made of Eq. (94). Although the 
procedure is entirely straightforward, the resulting 
expressions become rather complicated and are not 
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very illuminating. We therefore leave to the amusement 
of the interested reader the determination of the specific 
expressions for the commutation relations of the various 
components of the curvature tensor on an initial space­
like surface. 

For the case where the surface of integration in Eq. 
(97) is taken to be null, the analysis of the initial value 
problem for Eq. (94) proceeds somewhat differently. 
Let us for simplicity call the left-hand side of Eq. (94) 
(Tp^vap- (We note that o-^^ap has all the symmetries of the 
Weyl tensor.) If we resolve the components of anvap 
relative to the null quadruple, Eq. (55), the ten inde­
pendent equations, (94), separate into two groups, in 
the following fashion 

(98) 

and 

(99) 

m'^k^m'yk^aapy8=0 , 

mHH'yk^(Ta^y8=0, 

mH^7n'ypaa^y8=0, 

Although many equations appear to occur as complex 
conjugate pairs, this is not, in fact, the case since we shall 
find it convenient to take a^yap to be a complex tensor 
field. The reason for distinguishing between Eqs. (98) 
and (99), is that Eq. (98) is found to contain only 
derivatives of a^pff entirely within the null surface, 
Eq. (23), whereas Eq. (99) all contain derivatives off 
the null surface. One can check that Eqs. (99) propagate 
off the initial null surface all the independent com­
ponents of a^pa with the exception of k^Tn^fn'^a^j^fr and 

For the determination of the propagation of these 
latter two components we must addend to these set of 
equations the two obtained by differentiating Eqs. (98) 
in the l^ direction : 

m'^k^7n'^kHp(ra^y8,p=0, 

m''k^m'^kHPcra0y8,p = 0. 
(100) 

Equations (100) will now determine the propagation 
of kf"frVm''ay,va,pk^ and kfm''m''af,p^,pkP off the initial null 
surface. We can therefore assert that if we can find a 
set of initial data which satisfies the two constraint 
equations, (98), a full solution of Eq. (94) can be 
determined subject to the usual ambiguity typical of 
propagation off a null surface. 

Let us now consider 

where a is an arbitrary scalar distribution. I t is evident 
that Eq. (101) satisfies all the required symmetries, 
Eq. (91). A little computation confirms that Eq. (101) 
also identically satisfies the constraints, Eqs. (98), for 
arbitrary choice of o: on the initial null surface. I t is of 
course not permissible to assume that ap^po- continues to 
have the form Eq. (101) off the initial surface, for the 
propagation off the surface is governed by the remaining 
equations, (99) and (100). [ In view of the terms of the 
form a^op,n, which appear on the right-hand side of 
Eq. (96), we shall in fact have to take these remaining 
equations into consideration in our subsequent calcu­
lations, in contrast to the procedure employed at the 
corresponding point of the previous section.] 

If we again take the surface element of the integral 
in Eq. (97) to be given by Eq. (58), and the arbitrary 
scalar distribution, a, to be given by Eq. (64), the 
left-hand side of Eq. (97) assumes the form [Ca^y8{v,Q), 
\l/{v\^)'}, where we have introduced the Penrose func­
tion for the gravitational field 

xP^Tfl^k^m'^k^Ca^yS. (102) 

If we are primarily concerned with the determination 
of commutation relations for the Penrose function and 
its complex conjugate, if, on the initial null surface, it 
will not be necessary to use all of the components of 
Eq. (97). I t is sufficient to consider the two expressions 
obtained by multiplying Eq. (97) by m'^k^fhP'¥ and 
m'^k^m'^kK Upon performing these operations and sub­
stituting Eqs. (101) and (64) into the right-hand side 
of Eq. (97), we obtain after some tedious but rather 
straightforward computations 

and 
LHv.n),Hv\^')>o (103) 

[^(.,12),^(.',O0]= — - 5 ( 0 - ^ 0 , (104) 
4 r/ 

(^ixva^ioi('tnnkv~7nj,k^)7n(r (101) 

where b'"{v—v') is the third derivative of the Dirac 
delta function. Equations (103) and (104) fully char­
acterize the commutation relations of the linearized 
gravitational field on null cone given by Eq. (23). As 
in the previous theories, if we desire to obtain the 
commutation relations on the null surface at the "past 
infinity" it is again convenient to define p{v,^) as in 
Eq. (68). 

I t then follows immediately from Eqs. (103) and 
(104) 

[p(2;,O),p(z;',120] = 0 (105) 
and 

[p(?;,O),p(z;',O0]= - i 5 ' " ( ^ - y ) 5 ( O - 1 2 0 . (106) 

The commutation relations for the linearized gravi­
tational field at "future null infinity" can be obtained 
in an analogous fashion as indicated at the end of 
Sec. IV. 

In order to facilitate a comparison with the results 
of Sees. IV and V it is convenient to introduce a gauge 
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such that the potential hp,y satisfies an "outgoing radia­
tion condition" 

k%^a=^0. (107) 

In this gauge the components of hfiv, which characterize 
the two independent states of polarization of gravita­
tional radiation, can be represented by the single com­
plex scalar m^rrVhfiy. If we define 

F^(l/V2)rm^m^^^,, (108) 

a simple calculation employing Eq. (107) yields 

k^k'H,y,,^^ryp, (109) 

Equations (103) and (104) can therefore be written 

, 1 = 0 (110) 

I , ]=-^d''\v-v')8{^-n'), (111) 
L dv^ dv 

respectively. 
Integrating these last two equations we obtain, 

modulo the degree of arbitrariness discussed at the 
conclusion of the previous section 

and 
[^(2;,0),^(/,fiO] = 0 (112) 

lH(v,n),H(v\n')']= -ia(v-v')8(Q-^'). (113) 

If we define the gravitational "news function" 

1 
y^=lim H=— lim rm^m''hnv, 

r-->oo -v/O r—^oo 

(114) 

at "past null infinity" we have analogous to Eq. (109) 

k%^h,^,=^l2p, (115) 

Thus, apart from an additive arbitrary antisymmetric 
function of the angles we can conclude that the relations 

and 
[A(z;,O),^(z;',O0] = 0 (116) 

[A(2;,12),;^(2;',^0]= - k ( ^ - ^ 0 5 ( ! ^ - 1 2 0 (117) 

are equivalent to Eqs. (105) and (106). We note the 
striking similarity of these commutation relations and 
those of the Klein-Gordon and Maxwell fields. 

VII. THE GENERAL THEORY OF RELATIVITY 

The primary interest in the preceding development 
lies in the possibility of extending it to the general 
theory of relativity. A presentation for general rela­
tivity, to a large extent parallel to that of Sec. VI, has 
been in print for some time.^ Let me briefly review its 
development in order to indicate the cause of its 

6 P. G. Bergmann and A. B. Komar, Les Theories Relativistes 
de la Gravitation, Colloques Internationaux du C.N.R.S. XCI, 
Royaumont, 1959, Editions du C.N.R.S., Paris, 1962, p. 309. 

foundering and to show how the considerations of this 
paper can repair some of the damage. 

The gravitational field is described by a symmetric 
tensor, g^ ,̂ which is not directly observable. Tensors 
obtainable from one another by means of general 
curvilinear coordinate transformations are understood 
to describe the same gravitational field. Nor is the 
Riemann tensor directly observable in this theory, 
since it too changes its form under curvilinear coordi­
nate transformations. Only constants of the motion are 
invariant under general coordinate transformations and 
represent observables. We shall introduce the usual 
notation that a semicolon subscript shall denote co-
variant differentiation with respect to the Christoffel 
symbols r%^ determined by the metric ĝ ,̂ . (The fact 
that there is no background metric with respect to 
which one can specify once and for the metric and/or 
affine properties of the manifold is the principle source 
of the sundry difficulties that we encounter in this 
theory.) 

The field equations satisfied by the metric are given 
by Eq. (90), where the symbols on the left-hand side 
of Eqs. {^S) through (87) are now to be understood in 
their usual meaning in Riemannian geometry. If we 
again define a tensor field af^vcr having the symmetries 
of Eq. (91) we can employ it as before to construct the 
vector field, CP, as in Eq. (92). Analogous to Eq. (93) 
we now have 

CP; P + (-a:^p; ^ - 27^; p)G'p - a^,,, pC^^-p, (118) 

the principal difference being the occurrence of semi­
colons now instead of commas. I t would be tempting 
at this point, in analogy with Eq. (94), to require 

QJ(jUJ'(r;p) U (119) 

(where the parenthesis denotes that the indices are to 
be symmetrized according to all the symmetries of the 
Weyl tensor), and thereby conclude the analog of Eq. 
(95) 

5 ^ / x ^ = — J ( « V ; c r + a % / i ; < r ) —7iu;»'—7»';/z. ( 1 2 0 ) 

This is precisely how one proceeded in Ref. 6. The 
principal error of this approach is that in view of the 
fact that a semicolon appears in Eq. (119) rather than 
a comma (as well as other metric-dependent terms 
required to eliminate the trace of the expression), Eq. 
(119) does not define a class of functions independent 
of the dynamical field. Thus, although it is still true 
that, when Eq. (119) is satisfied, J^C^dSp is a constant 
of the motion, it is no longer true that what it generates 
is correctly given by Eq. (120). In effect there are terms 
on the right-hand side of Eq. (118) which are func­
tionally dependent on the field equations, Gf^p. This 
observation is further confirmed by the fact that dg^iv, 
given by Eq. (120) does not satisfy the perturbed 
Einstein field equations as a consequence of Eq. (119). 
Curvature-dependent terms appear which did not occur 
in the linearized theory. 
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If, however, we wish to consider a truncated theory, 
obtained from general relativity by imposing the 
boundary conditions that the only spaces to be admitted 
are those which are asymptotically fiat in the sense of 
Penrose,^ we can recover the validity of some of the 
relations obtained in the previous section. In fact, if 
we note that the correct expressions, Eqs. (118) and 
(119), deviate from the corresponding expressions of 
linearized theory by terms which vanish in the limit 
r—>oo, in this limit, by paralleling the steps of the 
preceding section, we can rigorously recover the com­
mutation relations Eqs. (105) and (106) or equivalently 
Eqs. (116) and (117) for the full Einstein theory. (With 
this hypothesis of Sachs^ thus established, the reader 
is referred to his paper for a presentation of how this 
set of commutation relations may be employed to 
represent the motion group available to manifold at 
infinity.) 

In view of the fact that the commutation relations 
at infinity for the news function of the asymptotically 
flat full theory is identical to those of the linearized 
theory, the reader may wonder in which way the 
quantum theories obtained by use of these Poisson 
brackets could possibly differ. Although the pure in­
coming fields defined at ^^past null infinity," and the 
pure outgoing fields defined at "future null infinity" 
satisfy identical commutation relations in both theories, 
the relationship between the incoming and the outgoing 
fields is vastly different for the two theories, requiring, 
as it does, an integration from "past null infinity" to 
"future null infinity" of the field equations of the theory. 

In conclusion we would like to make three comments: 
(1) I t should be possible to derive the commutation 

relations for the Einstein theory at null infinity by 
working directly on that surface at infinity, without 
reference to a limiting procedure so necessary in our 
present development. This will be done in a subsequent 
paper by employing the technique of conformal trans­
formations to bring the surface at infinity into a finite 
region where it can be more easily studied. 

(2) One would not expect a quantum theory based 

on the commutation relations developed for this 
truncated theory to be equivalent to a quantization of 
the full nontruncated theory, or for a theory truncated 
in a different fashion, for example by admitting only 
solutions of the field equations which are spacially 
closed and/or simply connected. I t docL not appear to 
be possible to extend the methods of this paper to 
treat these more general spaces. A quantum theory 
which would admit states of a closed universe would 
probably have to be constructed by rather different 
considerations. 

(3) The arbitrary antisymmetric functions of the 
angles which occurred in the expressions for the com­
mutators of the news function are present due to the 
existence of the possibility of performing Bondi-
Metzner transformations^ at null infinity. We have 
succeeded in eliminating these functions from the scalar 
field theory (and we should expect to eliminate them 
from the Maxwell and linearized gravitation theory) 
by making explicit reference to the family of null cones 
used, including the manner of anchoring their vertices. 
For the full Einstein theory, this does not appear to be 
possible, and we should therefore not expect to be able 
to eliminate these arbitrary functions of angle from the 
expressions for commutators which are equivalent to 
Eqs. (116) and (117) of the linearized theory. One may 
therefore prefer to eliminate all reference to such 
arbitrary functions by working with commutators 
obtained through differentiating these latter expres­
sions once with respect to either v or v\ That such a 
procedure can provide commutation relations which 
are covariant under Bondi-Metzner transformations 
appears to be intimately related to the proof given by 
Sachs^ of the existence of an integrable affine connection 
at null infinity. 
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